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Abstract

The thermoelastic stresses in a crystal in the shape of a circular cylinder or disk are considered[ The crystal
is a cubically!orthotropic linear elastic solid\ with three independent elastic properties[ The cubic anisotropy
renders the problem asymmetric\ despite the axisymmetry of the geometry and thermal loading[ This problem
is motivated by a thermoelastic model used for certain crystal growth processes[ Two simplifying assumptions
are made here] "a# the problem is two!dimensional with plane strain or plain stress conditions\ and "b# the
elastic properties do not depend on the temperature[ A new Fourier!type perturbation method is devised
and an analytic asymptotic solution of a closed form is obtained\ based on the weak cubic anisotropy of the
crystal as a perturbation parameter[ A general solution technique is described which yields the asymptotic
solution up to a desired order[ Numerical results are presented for typical parameter values[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

Single crystals of various materials are required for some high!performance electronic and opto!
electronic devices[ Crystal applications include semiconductors\ laser modulators\ elec!
tromechanical transducers and solar panels[ Techniques for bulk crystal growth with good quality
control have improved dramatically in the last 39 years "Hurle\ 0882#\ but full understanding of
the processes involved is still lacking[

One of the most popular bulk crystal growth techniques\ with wide applications to semicon!
ductors\ is the Czochralski method "CZ#\ or its variant\ Liquid Encapsulated Czochralski "LEC#
"Hurle and Cockayne\ 0883#[ This method is based on pulling the crystal from the melt[ A rod
holding an oriented seed is lowered to the surface of the melt contained in a crucible\ and\ after a
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solid crystal with the desired diameter initiated\ the rod is slowly pulled upwards[ The crucible is
externally heated in a controlled manner\ to maintain the lower surface of the crystal near the
melting temperature[ Large!diameter cylindrical silicon "Si# crystals can be grown in this manner
at a rate of a few centimetres per hour[ IIIÐV compound crystals\ such as Gallium Arsenide "GaAs#
and Indium Phosphide "InP#\ are more di.cult to grow than Si\ in terms of yield and quality
control "Iseler\ 0873#[

During the bulk growth process\ the main load that acts on the solid crystal is the thermal load
due to the non!uniform temperature distribution that exists in the CZ growth chamber and\ as a
consequence\ in the crystal itself[ Si\ GaAs and InP are all anisotropic crystals with cubic symmetry[
The thermal load gives rise to a stress _eld\ which in turn induces a _eld of dislocations in the
crystal that has a very important e}ect on its quality[ Therefore\ it is important to estimate the
thermal stress distribution in the crystal[

There have been various attempts to mathematically model the stress problem in cylindrical
crystals[ Some of the models are based on linear thermoelasticity "Jordan et al[\ 0870\ 0873#\ and
others on thermo!viscoplasticity "Lambropoulos et al[\ 0872^ Volkl and Muller\ 0878#[ Typically
the CZ process is extremely slow compared to the solid!mechanics time scale\ and so the elastic or
viscoplastic problem may be regarded as quasi!static\ and no inertia e}ects have to be considered[
Full CZ models should be three!dimensional and anisotropic\ although it is common to consider
two!dimensional "axisymmetric# and isotropic models for simplicity "Iwaki and Kobayashi\ 0870\
0875#[ The problem is inherently three!dimensional even when the geometry and temperature
distribution are axisymmetric\ due to the cubic orthotropy of the crystal[ However\ the deviation
from two!dimensional isotropic conditions is typically not very large\ and thus the simpli_ed
models may sometimes be useful in providing crude solutions[ Lambropoulos "0876# investigated
the regimes of validity of the isotropic assumption[ The anisotropic problem has been attacked
using numerical methods\ such as _nite element analysis "Dupret and van den Bogaert\ 0883^ Tsai\
0880#[

In this paper\ we consider the thermoelastic stresses in a cylindrical crystal[ The crystal is a
cubically!orthotropic linear elastic solid\ with three independent elastic properties[ Thus\ the
geometry of the problem is cylindrical whereas the material properties are Cartesian[ We devise a
new Fourier!type regular perturbation method\ and obtain an asymptotic solution\ based on the
weak cubic anisotropy of the crystal[ That is\ we use the deviation of the elastic moduli tensor
from that of an isotropic material as a perturbation parameter\ and expand the solution in a
perturbation series in powers of that parameter[ This results in a closed!form analytical solution
to the problem[ We derive the _rst!order solution in detail\ and we also show how to obtain a
high!order solution for any desired order[ The measure of anisotropy of the crystal material
determines the required number of terms in the perturbation series[ Also\ the higher the order of
the asymptotic solution is\ the larger is the number of cylindrical harmonics that can be captured
in it[

In developing the solution\ we make two main simplifying assumptions]

"a# the problem is two!dimensional with plane strain or plane stress conditions\ namely variation
in the axial direction is neglected\ and

"b# the elastic properties do not depend on the temperature\ and thus the crystal is homogeneous[

Assumption "a# is the more limiting one[ It is physically justi_ed only if the axial temperature
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`radient is much smaller than the radial `radient\ or if the crystal under consideration is a thin disk[
In the former case\ the axial gradients may be neglected compared to the in!plane gradients\ which
justi_es a plane strain assumption for each plane[ Thus\ the three!dimensional problem can be
replaced by a sequence of independent two!dimensional problems\ each of which is associated with
a certain cross section of the cylinder[ Although the case of small axial gradients is not very
common "since it means a slow crystal growth rate#\ it does exist and is of interest in practice since
a small gradient in the growth direction in a CZ process ensures a high quality crystal "Borolev et
al[\ 0884#[ The case of a disk is relevant if the crystal is grown as a thin _lm on a circular wafer
"Hurle\ 0883#[ In this case the plane stress assumption is justi_ed[

The advantage of the present approach is fourfold[ First\ to the best of our knowledge this is
the _rst closed!form analytical solution available which takes into account the anisotropy of the
crystal[ Also\ the present approach of using a measure of the anisotropy as a perturbation parameter
is unique[ Analytic solution for the solid crystal problem do exist\ even in three dimensions "e[g[\
Iwaki and Kobayashi\ 0870\ 0875#\ but only under the assumption of isotropy[ The availability of
an analytical solution that does not depend on the performance of a speci_c numerical code is
certainly important[ Second\ such an analytic solution can be very useful in serving as a simple
benchmark in testing and evaluating the performance of numerical codes[ Third\ the solution
presented here is useful in solvin` certain practical problems in solid crystals\ in the limited cases
mentioned in the previous paragraph[ Finally\ the approach adopted here may serve as the _rst
step in developin` a three!dimensional solution procedure which is appropriate for more general
problems[ Such a procedure is currently under investigation[

Following is the outline of the paper[ In Section 1\ we state the thermoelastic problem under
investigation[ In Section 2\ we present the asymptotic solution to this problem[ We employ the
well!known zero!order isotropic solution "Landau and Lifshitz\ 0875# to deduce the _rst! and
higher!order analytic approximations to the exact solution[ The solution is presented sim!
ultaneously for the plane strain and the plain stress cases[ In Section 3\ some speci_c solutions are
worked out for typical parameters[ We conclude the paper with some remarks in Section 4[

1[ Mathematical preliminaries[ Problem formulation

We consider a long elastic cylinder under plane strain conditions[ The cross section of the
cylinder is a circle of radius R centred at the origin of the XY!plane[ For any system of orthogonal
coordinates "h0\ h1# the equilibrium equations in the elastic stresses sij\ i\ j � 0\ 1 takes the form
"Landau and Lifshitz\ 0875#

div s"h0\ h1#¦F"h0\ h1# � 9^ s � "sij#^ s01 � s10 "1[0#

The detailed expressions for the divergence of a symmetrical tensor involve the metric of the
coordinate system "Landau and Lifshitz\ 0864#[

In the above F �" f0\ f1# designates the mass forces of various physical nature[ Particularly\ for
a non!uniformly heated solid\ F is proportional to the temperature gradient]

F � A grad T"h0\ h1# "1[1#
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From here on Cartesian "x\ y# and polar coordinates "r\ u# will be used in parallel[ In both systems
the elastic response of an isotropic material is described by the following constitutive relation

2
s00

s11

s01
3� g 2

C00 C01 9

C01 C00 9

9 9 C33
3 2

o00

o11

o01
3 "1[2#

C00 � x0^ C01 � x0¦1x1^ C33 � C00−C01 � −1x1

g �
E

1"0¦n#"0−1n#
^ x0 � 1"0−n#^ x1 � −"0−1n# "1[3#

that involves only two material constants*the Young modulus E and the Poisson ratio n[
In the relation "1[2# the strain tensor o � "oij# represents the covariant gradient of the dis!

placement vector u �"u0\ u1#

o � 0
1
"grad u¦gradT u# "1[4#

Using "1[2#Ð"1[4#\ the eqn "1[0# may be expressed equivalently in terms of u"h0\ h1#

x0 grad div u¦x1 rot rot u � −g−0F "1[5#

eqn "1[5# holds in a thin disk "plane stress conditions# too\ provided that the coe.cients involved
are obtained from "1[3# by the formal transformation "Landau and Lifshitz\ 0864#

E :
E"0¦1n#

"0¦n#1
^ n :

n

0¦n

so that

g �
E

1"0−n#
^| x0 �

1
0¦n

^ x1 � −
0−n

0¦n

This resemblance enables us to perform further analysis in a uniform manner for both plane strain
and plane stress cases[

The components of the strain*Ðdisplacement di}erential relation "1[4# are dependent on the
coordinate system[ For instance we have in the polar system "Landau and Lifshitz\ 0875#

orr �
1ur

1r
^ ouu �

0
r

1uu

1u
¦

ur

r
^ 1oru �

1uu

1r
−

uu

r
¦

0
r

1ur

1u
"1[6#

When passing to the Cartesian system the strains "1[6# are transformed by "Landau and Lifshitz\
0875#

orr¦ouu � oxx¦oyy

ouu−orr¦1ioru � exp "1iu#"oyy−oxx¦1ioxy# "1[7#

A square symmetric orthotropic crystal aligned with the "x\ y# coordinate axes corresponds to the
Cartesian form "1[2# of constitutive relation in which the entry C33 is not necessarily equal to
C00−C01 but may take an admissible value[ The energetically reasonable bounds on C33 are
discussed by Ting "0885#[ The constant
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m� � gC33:1

is termed the second shear modulus of an orthotropic crystal in distinction to the shear modulus

m � g"C00−C01#:1

The moduli E and n related to C00\ C01 by "1[3# will be also in use[ The dimensionless factor

v � 1"m�−m#:g � C33−C00¦C01 "1[8#

is conveniently introduced "Landau and Lifshitz\ 0875# to measure the anisotropy of a square
symmetric medium[ Typically\ v lies in the range of 9[33Ð9[55 "Lambropoulos\ 0876#[ From "1[3#
it follows that v vanishes for an isotropic material[

Combining now relations "1[0#\ "1[2#\ "1[4# and "1[8# in the "h0 � x\ h1 � y# coordinates "when
o00 � oxx\ o11 � oyy\ o01 � oxy and f0 � fx\ f1 � fy# we arrive at the following Cartesian form of
equilibrium equations

x0 gradx div u¦x1 rotx rotu ¦v
1oxy

1y
� −g−0fx^ u �"ux\ uy#

x0 grady div u¦x1 roty rot u¦v
1oxy

1x
� −g−0fy^ 1oxy �

1ux

1y
¦

1uy

1x
"1[09#

in which the isotropic and anisotropic terms are separated explicitly[ Note that if v � 9\ eqn "1[09#
reduce to the isotropic eqn "1[5#[

For v ³ 0 this enables us to approximate the solution of "1[09# analytically by expressing the
vector u as a perturbation series in v "Holmes\ 0884#

u � s
�

j�9

vju" j# "1[00#

In view of "1[1#\ substituting "1[00# into "1[09# gives the isotropic problem "1[5# of the zeroth!order

x0 grad div u"9#¦x1 rot rot u"9# � −g−0A grad T "1[01#

and the successive higher!orders

x0 grad div u" j#¦x1 rot rot u" j# � −F" j−0# j � 0\ 1\ [ [ [ "1[02#

Here we incorporate the mass pseudo forces F" j# "x\ y# �"1o" j#
xy :1y^ 1o" j#

xy :1x#^ j − 9 which result from
the preceding equation[ Although the original anisotropic equation simpli_es to "1[09# only in the
Cartesian coordinates\ the isotropic approximating problems "1[01#\ "1[02# of any order are
handled with equal ease in any orthogonal system "h0\ h1#[ For this purpose it remains to express
the functions F "j#"h0\ h1# using the well!known formulae of vector analysis[ Particularly\ by "1[6#\
"1[7# we have for F" j# "r\ u# �" f " j#

r \ f " j#
u # after some algebra
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f j
r �
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and similarly
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u �
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where

1E " j#
r � o" j#

rr −o" j#
uu "1[05#

We complete the problem formulation by expanding the prescribed boundary conditions in powers
of v\ and appending them to "1[01# and "1[02#[

2[ Solution technique

To be more speci_c\ let the boundary r � R be free of applied traction

srr"R\ u# � s
�

j�9

vjs" j#
rr "R\ u# � 9^ sru"R\ u# � s

�

j�9

vjs" j#
ru "R\ u# � 9

Thus the elastic stresses are caused solely by the temperature gradient[ Assume further that the
temperature distribution is axially symmetric\ so that T � T"r#[ When solving the successive
problems "1[01#\ "1[02# the above boundary conditions should likewise be met separately for each
approximation step]

s" j#
rr "R\ u# � 9^ s" j#

ru "R\ u# � 9^ j � 9\ 0\ 1\ [ [ [ "2[0#

By virtue of "1[2#\ "1[6# they are expressed in terms of the displacements and their _rst derivatives[
We also impose the natural requirement for the strains to be _nite at the point r � 9[ In view of

"1[6# this means that

u" j# "9\ u# � 9^ j � 9\ 0\ 1\ [ [ [ "2[1#

2[0[ The zeroth!order approximation

For the square symmetry\ the multiplier A in "1[1# processes the form "Landau and Lifshitz\
0875#

A � −1
2
ag"0¦n# "2[2#

where a is the scalar coe.cient of thermal expansion[
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Due to the axial symmetry the second left!hand term in eqn "1[01# vanishes thus resulting
"Landau and Lifshitz\ 0875# in the following second!order equation in u"9# "r# �"u"9#

r "r#\ 9#

2"0−n#
"0¦n#

d
dr $

0
r

d"ru"9#
r "r##
dr %� aT?"r#

This equation is easy to integrate\ and yields the solution

u"9#
r �

a"0¦n#
2"0−n# 6

0
r g

r

9

T9"r#r dr¦"0−1n#
r

R1 g
R

9

T9"r#r dr7 "2[3#

where

T9"r# � T"r#−T"R#

The integration constants in "2[3# have been chosen as to satisfy the zeroth!order boundary
conditions "2[0#\ "2[1#] s"9#

rr "R\ u# � 9^ u"9#
r "9# � 9[

2[1[ The _rst!order approximation

In view of the symmetry of the zeroth!order solution "2[3# we have

1o"9#
rr

1u
�

1o"9#
uu

1u
� o"9#

ru � s"9#
ru 0 9

everywhere in the circle[ With this result the zeroth!order mass force F "9#"r\ u# �" f0\ f1# becomes
ðsee "1[03#\ "1[04#Ł

f "9#
r "r\ u# �

dE "9#
r "r#
dr

sin1 1u¦
1
r
E "9#

r "r# cos1 1u � E0"r#−E1"r# cos 3u

f "9#
u "r\ u# � E1"r# sin 3u "2[4#

In the above

E0"r# �
dE "9#

r "r#
dr

¦1r−0E "9#
r "r#^ E1"r# �

dE "9#
r "r#
dr

−1r−0E "9#
r "r# "2[5#

Now\ it is convenient to express the temperature T9"r# as a power series in r "although other forms
of T9"r# can also be considered#[ Such a series can be obtained by using a Taylor expansion about
r � 9[ Also\ if discrete T9 values are given via numerical or experimental data\ T9"r# can be de_ned
by polynomial interpolation "see Section 3#]

T9"r# � s
�

k�9

T	kr
k

In this case\ u"9#
r in "2[3# can also be expressed as a power series not involving\ by "2[1#\ "2[3#\ a

constant term]
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u"9#
r "r# � s

�

k�0

bkr
k

b0 �
a"0¦n#
2"0−n# 6

T	9

1
¦"0−1n# s

�

m�9

Rm

m¦1
T	m7^ bk �

a"0¦n#
2"k¦0#"0−n#

T	k−0^ k × 0 "2[6#

Due to "1[6#\ "1[05# and "2[6# the quantities "2[5# take the form]

1E0"r# �
d1u"9#

r "r#

dr1
¦

du"9#
r "r#
r dr

−
u"9#

r "r#

r1
� 1 s

�

k�9

ck¦1r
k^ 1ck �"k1¦3k−2#bk

1E1"r# �
d1u"9#

r "r#

dr1
−2

du"9#
r "r#
r dr

¦2
u"9#

r "r#

r1
� 1 s

�

k�1

dk¦1r
k^ 1dk �"k1−0#bk "2[7#

We note in passing that the linear term b0r in "2[6# makes no contribution to "2[7# and hence to
the high!order solutions[ In keeping with "1[2#\ "1[3#\ "1[6# this function corresponds only to the
zeroth!order homogeneous stress _eld srr � suu � gb0^ sru � 9[

Equation "1[02# and the speci_c dependence of the mass force F "9#"r\ u# in "2[3# on u\ permits us
to write the sought!for _rst!order solution u"0# �"u"0#

r "r\ u#\ u"0#
u "r\ u## as linear combinations of the

same trigonometric functions]

u"0#
r "r\ u# � w9"r#¦w0"r# cos 3u

u"0#
u "r\ u# � w1"r# sin 3u "2[8#

These relations provide the required re~ection symmetry with respect to the x\ y!axes]

u"0#
r "r\ u# � u"0#

r "r\−u#^ u"0#
u "r\ u# � −u"0#

u "r\−u#

In view of "1[2#\ "1[6# and "1[7# substituting "2[8# into the homogeneous boundary conditions "2[0#
leads to the boundary expressions]

nw?9"R#¦"0−n#
w9"R#

R
¦$nw?0"R#¦

0−n

R
"w0"R#¦3w1"R##% cos 3u � 9

0w?1"R#−
w1"R#

R
−

3w0"R#
R 1 sin 3u � 9 "2[09#

Because the di}erential operators in eqn "1[02# leave the structure of "2[8# unchanged\ the functions
w9"r# and "w0"r#^ w1"r## may be found separately by equating the same trigonometric terms in both
sides of "1[02#[ In doing so we _rst arrive at the boundary sub!problem of _nding the axially
symmetric function w9"r#]
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x0

d
dr $

0
r

d"rw9"r##
dr %� −E0"r#

w9"9# � 9^ vw?9"R#¦"0−n#
w9"R#

R
� 9 "2[00#

where the two!point boundary conditions are obtained from "2[1# and "2[09#\ respectively[
Similarly to "2[3#\ straightforward integration of this equation yields\ on account of "2[6#\ "2[7#

w9"r# � C9r−
0

x0r g
r

9

r dr g
r

9

E0"r9# dr9 � C9r−
0
x0

s
�

k�9

a"0¦n#"k1¦3k−2#

5"0−n#"k¦0#1"k¦2#
T	k−0 "2[01#

The constant C9 is employed to satisfy the boundary condition "2[00# at the point r � R while the
condition "2[1# w9"9# � 9 is met by "2[01# automatically[

The second sub!problem involves a system of two di}erential equations in w0"r#\ w1"r#[ We write
these equations in a general form which is valid for the case where the angular argument in "2[8#
is taken to be lu\ l � 0\ 1\ [ [ [ "rather than the _xed argument 3u#[

−
x0

r1 $
d
dr

"rw0"r##¦lw1"r#%¦
x0

r $
d1

dr1
"rw0"r##¦l

d
dr

w1"r#%
¦

x1l

r1 $lw0"r#¦
d
dr

"rw1"r##%� E1"r#

−
x0l

r1 $
d
dr

"rw0"r##¦lw1"r#%−x1

d
dr 6

0
r $¦lw0"r#¦

d
dr

"rw1"r##%7� −E1"r# "2[02#

We note that the functions E0"r#\ E1"r# are separated in the right!hand sides of the sub!problems
"2[00#\ "2[02#[

The system "2[02# is linear[ Hence its partial solution fi"r#\ i � 0\ 1 should be combined with a
general solution 8i"r# of the corresponding homogeneous system]

wi"r# � 8i"r#¦fi"r#^ i � 0\ 1 "2[03#

The di}erential operators "2[02# are of the Euler type[ Thus "Rice and Strange\ 0878# both functions
"8i"r# possess the form of the same power in r

8i"r# � H "i#
l rl^ i � 0\ 1 "2[04#

Substituting "2[04# into the homogeneous counterpart of "2[02# gives the algebraic system to de_ne
the constants H "0#

l \ H "1#
l ]

a00"l#H "0#
l ¦a01"l#H "1#

l � 9

a10"l#H "0#
l ¦a11"l#H "1#

l � 9 "2[05#

Here
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a00"l# � x0"l1−0#¦x1l
1^ a01"l# � lðx0"l−0#¦x1"l¦0#Ł

a10"l# � −lðx0"l¦0#¦x1"l−0#Ł^ a11"l# � −x0l
1−x1"l1−0# "2[06#

In order to _nd non!trivial solutions of "2[05# we set up the polynomial equation in l

"l1−0#1−1l1"l1−0#¦3l1¦l3 � 9 "2[07#

that results from setting the determinant D"l# � a00a11−a01a10 of "2[05# equal to zero[ Equation
"2[07# has four integer roots]

l0 � l−0^ l1 � l¦0^ l2 � −l−0^ l3 � −l−0

As would be expected\ these roots are independent of the elastic constant x0\ x1[ They may be
also identi_ed in a somewhat di}erent manner[ Indeed\ the displacement "rl cos l u\ rl sin lu# are
generated by the Airy|s biharmonic function C"r\ u# � rl¦0 cos lu[ By applying the biharmonic
operator 93 to C"r\ u# in the polar coordinates

93rl¦0 cos lu � ðl1−"l¦0#1Ł91rl−0 cos lu � ðl1−"l¦0#1Ł ðl1−"l−0#1Ł91rl−2 cos lu � 9

we arrive at the same four roots[
We avoid singularities at r � 9 by discarding the negative roots l2\3[ As a result the general

solution 8i"r# takes the form containing only two arbitrary constants H "0#
l20

80"r# � H "0#
l−0r

l−0¦H "0#
l¦0r

l¦0^ 81"r# � jl−0H
"0#
l−0r

l−0¦jl¦0H
"0#
l¦0r

l¦0

jl−0 � −a01"l−0#:a00"l−0# � −0^ jl¦0 � −a01"l¦0#:a00"l¦0# "2[08#

We next _nd the partial solution fi"r#[ By substituting the power expansion "2[7# for E1"r# the
right!hand side of the system "2[02# takes the form

s
�

k�9

dk¦1"rk^−rk# "2[19#

From the preceding results it follows that except for the powers k � l20 any other individual term
of "2[19# gives the following addition to the partial solution of "2[02#

"D "0#
k¦1r

k\ D "1#
k¦1r

k#^ k � l−0\ k � l¦0

D "0#
k¦1 � D−0"k#dk¦1"a11"k#−a01"k##^ D "1#

k¦1 � −D−0"k#dk¦1"a10"k#¦a00"k## "2[10#

The constants D "0\1#
k¦1 are obtained by solving the corresponding 1×1 non!degenerated algebraic

system with the matrix "2[06# and the right!hand side "dk¦1\ −dk¦1#[ This system is arrived at by
substituting the term "D "0#

k¦1r
k\ D "1#

k¦1r
k# into "2[02#\ with the coe.cients of rk equated in the both

sides[ Summing the items "2[10# over k we obtain

s
�

k�9
k�l20

"D "0#
k¦1r

k\ D "1#
k¦1r

k# "2[11#

The solutions "t"0#
l−0"r#\ t"1#

l−0"r## and "t"0#
l¦0"r#\ t"1#

l¦0"r## for the two remaining terms of "2[19#

"dk¦1r
k\−dk¦1r

k#^ k � l20

should be derived in another way since the matrix "2[06# degenerates for these values of k[ To this
end we use the method of unde_ned coe.cients "Rice and Strange\ 0878# thus arriving at the
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following sought!for expressions which involves a logarithmic multiplier ln r and the parameters
jl20 in "2[08#

t"0#
l−0"r# � Q "0#

l−0r
l−0 ln r¦Q "1#

l−0r
l−0^ t"1#

l−0"r# � jl−0Q
"0#
l−0r

l−0 ln r¦jl¦0Q
"1#
l−0r

l−0

t"0#
l¦0"r# � Q "0#

l¦0r
l¦0¦Q "1#

l¦0r
l¦0 ln r^ t"1#

l¦0"r# � jl−0Q
"0#
l¦0r

l¦0¦jl¦0Q
"1#
l¦0r

l¦0 ln r "2[12#

The pairs of constants Q "0#
l−0\ Q "1#

l−0 and Q "0#
l¦0\ Q "1#

l¦0 in "2[12# are found by solving the algebraic
systems

ðx0"l−1#−x1lŁQ "0#
l−0¦l"0¦jl¦0#ðx0"l−1#¦x1lŁQ "1#

l−0 � dl−0

ðx0l−x1"l−1#ŁQ "0#
l−0¦l"0¦jl¦0#ðx0l¦x1"l−1#ŁQ "1#

l−0 � −dl−0 "2[13#

and

1"x0−x1#lQ "0#
l¦0¦ðx0"ljl¦0¦1l¦1#¦x1ljl¦0ŁQ "1#

l¦0 � dl¦0

1"x0−x1#lQ "0#
l¦0¦ðx0l¦x1"1ljl¦0¦1jl¦0¦l#ŁQ "1#

l¦0 � −dl¦0 "2[14#

respectively[ These systems are also derived by substituting "2[12# into "2[02#\ with the logarithmic
terms cancelling each other in the resultant expressions[ We then add "2[11# and "2[12# to obtain
explicitly the partial solution fi"r#

fi"r# � s
�

k�9
k�l20

D "i#
k¦1r

k¦t"i#
l−0¦t"i#

l¦0^ i � 0\ 1 "2[15#

We now summarize the _rst!order solution\ and the steps needed to obtain it[ In all the following
calculations\ we set l � 3\ which is appropriate for the _rst!order solution[

The _rst step is preparatory[ The relative temperature T9"r# � T"r#−T"R# is written as a power
series in r\ with coe.cients T	k[ Then\ the coe.cients bk are calculated by using "2[6#[ When the bk

are known\ the coe.cients ck and dk are found from "2[7#[ Next\ the quantities aij"k# are determined
from "2[06# for integer values of k\ as well as the determinant D"k# � a00a11−a01a10[ We also
calculate the j2 and j4 in "2[08#\ and the D "i#

k¦1 in "2[10# for k � 2\ 4[
The second step is the determination of w9"r#[ This function is given by "2[01#\ where the constant

C9 is obtained from the second condition in "2[00#[
The third step is the determination of w0"r# and w1"r#[ These functions are given by the decompo!

sition "2[03#[ The functions 8i"r# are obtained from "2[08#\ and involve the constants H "0#
2 and

H "0#
4 which will be determined later[ To _nd the functions fi"r#\ we _rst calculate the quantities

Q "i#
2 and Q "i#

4 by solving the two 1×1 systems of equations "2[13# and "2[14#[ Then we _nd t"i#
2 and

t"i#
4 from "2[12#[ Then the fi"r# are given by "2[15#[
Finally\ the whole solution for the displacements is given by "2[8#[ By following all the steps

above\ the displacements are determined up to the unknown constants H "0#
2 and H "0#

4 [ To _nd these
constants\ the displacements are di}erentiated to obtain the strains and from them the stresses[
Requiring the two stress boundary conditions "2[0# "with j � 0# to hold\ yields H "0#

2 and H "0#
4 [ This

completes the solution process[
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2[2[ Hi`her!order solutions

All the analytical tools now are at hand to construct further approximations in ascending order[
An important point is that the trigonometric functions of the same argument appear in "2[8#
only by pairs[ For brevity\ the vectors whose components are proportional to cos lu and sin lu\
respectively\ will be referred to as l!type terms so that the _rst!order approximation "2[8# involves
the zeroth!type term and the fourth!type term[

In preparation for each approximation step the following factors that result from the structure
of the right side vector "1[03#\ "1[04# must be kept in mind]

, substituting an axially symmetric term of zeroth type invariantly gives a zeroth!type term and a
fourth!type term which are handled exactly as was done above for the _rst!order approximation^

, any l!type term "l � 3m\ m � 0\ 1 [ [ [# gives in turn three terms of 3"m−0#\ 3m\ and 3"m¦0# type
which may be found following the same guidelines[

Whilst the proposed method leads to rather cumbersome expressions\ it provides a good quan!
titative insight to the problem[

3[ Numerical examples

To illustrate the solution obtained in the previous section\ we now present some numerical
results for typical data\ taken from Jordan et al[ "0873#[ We consider a LEC GaAs boule\ with
radius 1[4 cm and length of 4 cm\ pulled at a rate of 9[9993 cm:s\ with a temperature di}erence of
199 K between the melting temperature "0400 K# at the bottom and the ambient temperature[ The
temperature distribution is axisymmetric\ and depends on the radial coordinate r as well as on the
axial coordinate z[ We concentrate on the cross section z � 0[4 cm\ and neglect the axial tem!
perature variation\ to enable plane strain conditions in the thermoelastic problem[ We characterize
the radial variation using the following four data points]

r ðcmŁ 9 0 1 1[4

T ðKsŁ 0300 0393 0284 0260

We interpolate these data points using the third!degree Lagrange polynomial which passes through
them[ This yields the radial temperature function T"r# in the circular cross section 9 ¾ r ¾ 1[4[
The elastic displacement and stress _elds generated by this temperature _eld depend linearly on
the thermal expansion coe.cient a ðsee "2[2# and "1[1#Ł[ Henceforth we normalize all the results
by a[ The stresses obtained using our perturbation technique do not depend on the elastic properties
C00\ C01 and C33 separately\ since each problem in the perturbation sequence is isotropic!like[ The
stresses only depend on the anisotropy parameter v � C33−C00¦C01\ which has been used as a
perturbation parameter ðsee "1[00#Ł[ They also depend on Poisson|s ratio n[ We set n � 9[2 and
v � 9[4\ which are typical\ and obtain the asymptotic solution up to _rst order[

In Fig[ 0"a# and 0"b#\ the contour lines of the displacement components ur and uu are shown\
respectively[ They are plotted on a quarter!disk domain\ although due to the symmetry a one!
eighth of a disk domain is su.cient[ The contour patterns of ur clearly deviate from the isotropic
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(a)

(b)

Fig[ 0[ Displacement contour lines of "a# ur\ "b# uu[
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"axi!symmetric# pattern of concentric circles\ which is obtained by the zero!order solution[ The
displacement uu is non!zero\ as opposed to the isotropic case[ The maximal value of ur is 21[89\
and it is attained on the boundary of the cylinder in a 34> direction relative to the crystal symmetry
axes "x\ y#[ The maximal value of uu is 0[232\ also on the boundary\ but in a 11[4> orientation[ On
the other hand\ along the 34> direction\ uu vanishes[

Figure 1"a#Ð"d# are contour plots of the stress components srr\ suu\ sru\ and the von Mises
e}ective stress se �""srr¦suu#1¦2s1

ru−2srrsuu#0:1\ respectively[ They are shown on a quarter!disk
domain\ although due to the symmetry a one!eight of a disk domain is su.cient[ In comparison\
the isotropic solution "which is also the zero!order solution in the perturbation expansion# consists
of perfectly circular contour lines for srr\ suu and se\ while sru vanishes[ Figure 1 shows that the
hoop stress suu is almost axisymmetric\ whereas the other stress components have more asymmetric
features[ The maximal stress values are as follows]

srr � 13[847\ attained at the point r � 9\
suu takes the same maximal value 13[847\ attained at the same point r � 9\
sru � 09[288\ attained at the point "r � 9[4R\ u � 11[4>#\
se � 17[050\ attained at the same point "r � 9[4R\ u � 11[4>#

We have also obtained other results with di}erent parameter values and temperature distributions[
We remark that the results obtained for stresses and displacements have been found to be quite
sensitive to the temperature distribution function T"r#\ not just quantitatively\ but qualitatively as
well "i[e[\ in terms of the contour line patterns#[ This implies that a good knowledge on the
temperature distribution in the boule prior to stress analysis is important[

4[ Concluding remarks

In this paper\ we have devised a Fourier!type perturbation method for the problem of _nding
the thermoelastic stresses in a circular cylinder or disk with a cubic anisotropy[ The cubic anisotropy
renders the problem asymmetric\ despite the axisymmetry of the geometry and of the thermal
loading[ We have shown how to obtain a closed!form asymptotic solution\ up to a desired order[

The problem has been motivated by a thermoelastic model used for certain crystal growth
processes[ Our model takes into account the weak anisotropy of the crystal\ as opposed to some
of the previous works which neglected it altogether[ At the same time\ however\ we have made two
simplifying assumptions] "a# the problem is two!dimensional with plane strain or plane stress
conditions^ and "b# the elastic properties do not depend on the temperature\ and thus the crystal
is homogeneous[ These assumptions limit the applicability of the solution[ However\ the present
approach is still advantageous in several respects] it is the _rst analytic solution available which
takes the anisotropy of the crystal into account\ it can serve as a benchmark to numerical schemes\
it is a practical solution for crystal growth problems under certain conditions "see Introduction#\
and it serves as a basis for a more general solution procedure[

We currently investigate ways to obtain solutions that do not necessitate these assumptions[ In
particular\ we consider the full three!dimensional problem\ where the stresses vary in the axial
direction z as well[ Our approach is based on restating the problem as a perturbation problem in
terms of the anisotropy parameter v "as we have done in the present paper#\ and thus obtaining a
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(a)

(b)

Fig[ 1[ Thermoelastic stress contours of "a# srr\ "b# suu\ "c# sru\ "d# the von Mises stresses[
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(c)

(d)

Fig[ 1[*Continued[



S[ Vi`der`auz\ D[ Givoli:International Journal of Solids and Structures 25 "0888# 1098Ð1014 1014

sequence of isotropic!like two!dimensional elastic problems[ Each of these problems is then solved\
either analytically "in case this is possible#\ or numerically by the _nite element method[ In the
latter case\ this approach amounts to reducing the dimensionality of the numerical problem from
three to two\ with the obvious associated computational advantages[

Also under investigation are models for prediction dislocation densities\ based on the asymptotic
solutions mentioned above[ This has a direct bearing on the analysis of the crystal growth process[
We shall report on progress in these directions in a future publication[
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